![]() |
|
![]() |
![]()
Post
#1
|
|
Member ![]() Group: Advanced Members Posts: 178 Joined: 4-February 04 Member No.: 178 ![]() |
Hey guys, I want to go to school for engineering, Electrical or Electronics (both, if they have a program like that).
Anyhow, I have a big problem that currently prevents me from finishing even my Associates (Community College of the Air Force).....I can't do text-book algebra. I can do applied algebra, I've been doing it since I was a kid. But, put a text book in front of me, with x=axb+c2/d, and I might as well be reading Latin. One test study guide that I looked at had a question asking what the square root of i is. I can't even begin to understand how I get an answer to that. My line of thinking is that an imaginary number doesn't exist, therefore, it can't have a square root. Nothing = nothing. I worked at Stanford Linear Accelerator Center until recently, and I looked over some of the papers and machine technical stuff, in how the accelerator works, beam physics, etc. When I look at that kind of stuff, it makes sense to me....I may not know the exact answer, but if I had all of the necessary information, I could figure out the answer. I also picked up a book, "Engineering Formulas", by two German guys, and looking through there, the formulas make sense to me. Has anybody had this kind of problem before, or know somebody that did, or just have any suggestions that might help me out? I love doing math, but it frustrates the crap out of me that I can't get past this. I tried taking algebra twice in high school, flunked both times, tried it again in 1998, and got a D on that. I don't want to just pass the classes, I actually want to learn the stuff. Any help would be appreciated. Thanks. John |
|
|
![]() |
![]()
Post
#2
|
|
Member ![]() Group: Advanced Members Posts: 128 Joined: 17-March 04 From: Cleveland Member No.: 275 ![]() |
Ok, Phil obviously knows this better than me, but i'm gonna give try to give you another point of view (to me multiple points of view help me grasp ideas and concepts better, which may be what you would need?) I also second the tutor idea, and if there is a study group that you can go to, do that (not all of us have that luxury though).
I sucked at complex numbers when we did that in precalculus, but i've been out of the loop for a while mathematically, that and the instructor had something to do with it. I hope this wont confuse you, mathworld (great mathematics resource) has this link: http://mathworld.wolfram.com/ComplexNumberParadox.html which shows a false statement, hopefully that will help? Now, I busted out my precalc book, and i think they have a decent explanation of the need for the "complex number system" and simply put, the "real number system" cannot compute x^2= -1 since you cannot take the square root of -1 (in order to get x by itself int he first equation, you need to take the square root of both sides). So this is why imaginary numbers were created, merely to be able to evaluate such problems well, i'm probably better off taking a picture of the book, so here it is, and if anyone has a problem with it, the credit goes to the writers of the book, Tomas W. Hungerford of Cleveland State University, book called Contemporary College Algebra and Trigonometry, published by harcourt college publishers. (sorry, for no proper citing). (IMG:http://www.members.cox.net/mikic/image1.JPG) (IMG:http://www.members.cox.net/mikic/image2.JPG) so I hope that helps, as far as being able to "visualize it" I don't knwo, you need to be able to see that the system was developed to be able to solve what cannot be solved with the real number system, so its what we have in place in the modern world as the solution for those particular problems when you need to take the square root of a negative number. btw, i really hope i have my info straight, i havent used imaginary numbers since last year, Miki |
|
|
![]() ![]() |
Lo-Fi Version | Time is now: 2nd May 2025 - 05:35 AM |